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A NUMERICAL SIMULATION OF BOUNDARY LAYER 
EFFECTS IN A SHOCK TUBE 

K. J. BADCOCK 
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SUMMARY 
A numerical scheme is used to investigate boundary layer effects in a shock tube. The method consists of 
a mixture of Roe’s approximate Riemann solver and central differences for the convective fluxes and central 
differences for the viscous fluxes and is implicit in one space dimension. Comparisons are made with 
experimental data and with solutions obtained via boundary layer equations. Examination of the calculated 
flow field explains the observed behaviour and highlights the approximate nature of boundary layer 
solutions. 
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1. INTRODUCTION 

Model experiments are used in the aerospace industry to investigate flow fields around aircraft. 
The required flow conditions can be generated by connecting a shock tube to a test section 
containing a model of the aircraft under consideration. Possible conditions range from subsonic 
to hypersonic, resulting in a wide variation in fluid velocities and temperatures. In addition, shock 
tubes can be used to study real gas effects such as deviations from ideal gas behaviour. 
A discussion of some applications can be found in Reference 1. 

For any application it is necessary to know the flow conditions generated to enable interpreta- 
tion of the results. If the flow is inviscid and the gas is assumed perfect, then the transient 
development is well understood (see e.g. Reference 1). In that case the flow can be modelled by the 
Euler equations in one dimension. However, there are a number of possible effects which can 
cause departures from the inviscid solution. These include viscosity and heat conduction and 
so-called real gas effects involving deviations from the ideal equations of state. In this paper we 
shall be concerned with the first two and shall neglect the last. 

The departure from inviscid behaviour becomes especially marked when the shock tube is 
operating at low initial pressures (when the Reynolds number based on the tube radius and the 
peak velocity is typically about 500). This case is of particular interest fdr the investigation of 
high-altitude flow over re-entry vehicles. The experimental results of Reference 2 showed dra- 
matic departures from the anticipated inviscid behaviour. One measure of shock tube perform- 
ance which is of particular interest in experiments is the time interval for which the high- 
temperature conditions prevail. This time interval, called the test time, is given at some point in 
the tube by the time difference between the shock and the contact surface passing that point. 
Inviscid theory predicts that this time interval will increase linearly with distance from the 
diaphragm. It was reported in Reference 2 that for a fixed shock Mach number the test time 
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tended to a limiting value. It was also reported that the shock attenuation is highly non-linear. 
This behaviour was attributed to boundary layer effects. 

Considerable effort in the 1950s and 1960s was devoted to evaluating boundary layer  effect^.^ 
In Reference 4 the test time and the shock-to-contact-surface distance are related by an ordinary 
differential equation derived by considering a mass balance in the region between the shock and 
the contact surface. An estimate of the mass flow past the contact surface in the boundary layer is 
required. Boundary layer theory is used to give an expression for the boundary layer thickness 
6 at the contact surface, namely 

d=/?(Re)-”* ,  (1) 

where Re is the Reynolds number. The parameter /? is estimated by various methods. In Reference 
4 a value of b=J3 is suggested based on a correlation with experimental data. An analytical 
method of approximating /? is also presented which involves a similarity solution of boundary 
layer equations in Crocco variables. An improved estimate of is obtained in Reference 5 by 
taking into account the effect of the boundary layer on the free stream. This is done by finding 
a similarity solution of the uniform free stream problem and then adapting the solution by using 
the idea that the boundary layer at some point in a non-uniform free stream is the same as the 
boundary layer due to a uniform free stream with a different point of origin. It is concluded that 
the correlated value is reasonable except when the shock Mach number tends to unity. A different 
approach is used in Reference 6 to tackle the boundary layer-free stream interaction problem. 
The boundary layer equations are transformed so that the free stream boundary conditions are in 
a convenient format. The partial differential equations are then solved by expanding the solution 
in series form and numerically solving the resulting ordinary differential equations. Results 
obtained from this method are presented in References 5 and 7. In Reference 8 boundary layer 
equations in Crocco variables are solved for a uniform free stream for the entire flow between the 
expansion fan and the shock. The domain is divided into four regions and an appropriate 
similarity solution is given for each region. 

We refer to these methods by the generic term ‘boundary layer methods’. They provide a means 
of estimating viscous effects and correlate well with the available experimental data. However, 
several points arise. First, they are mainly concerned with the ‘steady state’ reached at the limiting 
test time. The experimental results of Reference 2 show that the problem is transient, with the 
steady state referred to lasting only over part of the tube. This transient behaviour casts doubt 
over some of the assumptions used in boundary layer methods. One example is the assumption of 
isentropic flow in the free stream between the shock and the contact surface. Secondly, the 
experimental results of Reference 2 suggest that the boundary layer thickens to be of the same 
order as the tube radius. This casts doubt on the applicability of boundary layer equations as 
a correct model and also suggests, in contrast to the assumption made in all the boundary layer 
methods mentioned above, that the flow in the inviscid region is two-dimensional. The present 
work aims to achieve several objectives: 

(1) to examine the transient nature of the problem 
(2) to give a full description of the flow field 
(3) to examine the assumptions underlying boundary layer methods. 

During the 1970s and the early 1980s a family of methods was developed for simulating 
one-dimensional inviscid flows with shocks. These are based on the method of Godunov’ and 
they split the problem into a series of discrete Riemann problems (i.e. hyperbolic partial 
differential initial value problems with piecewise constant initial data). These problems are solved 
separately and their solutions are recombined to advance the flow to a later time. Popular 
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methods of solving the Riemann problem include the methods of Glimm," Roe," Harten12 and 
Osher and S ~ l o m o n . ' ~  These methods are first-order-accurate in time and space. To improve 
them to second-order accuracy without introducing spurious oscillations around discontinuities, 
a correction term is added which is limited by a function of the gradients of the flow.14 The 
approximate Riemann solver-flux limiter approach gives a method of computing sharp and 
monotone shock wave profiles. These schemes are traditionally extended to two dimensions by 
operator splitting.I5- l 7  For viscous problems it has proved successful to calculate the inviscid 
terms in the simulation by one of the above methods, with central differencing being used for the 
remaining viscous terms. An implicit version of such a scheme is used in Reference 18 to compute 
aerofoil flows. This scheme uses linearizations in time of the flux functions given by Roe's scheme 
and the resulting linear system is solved using a sparse matrix solver. A similar method is used in 
Reference 19 to study shock wave-boundary layer interactions. 

In this paper a simulation of the Navier-Stokes equations is used to examine low-pressure 
shock tube boundary layer effects. The numerical details are given. Then results are compared 
with the experiments of Reference 2 and the boundary layer solutions of Reference 5 to establish 
the performance of the method and to introduce the flow effects of interest. Finally, the flow field 
is considered to examine the behaviour of the previous section and some of the assumptions used 
to obtain the boundary layer solutions. 

2. NUMERICAL METHOD 

Consider the situation illustrated in Figure 1. The governing equations are assumed to be the thin 
layer Navier-Stokes equations which are written in the form 

aw 8~ aG av 
at ax az az '  
-+-+-=- 

where 

V =  1 
Here p ,  u, v, e, p ,  p and IC denote the density, two components of velocity, energy, pressure, 
viscosity and heat conductivity respectively. The thermodynamic relations used to close the 
system are p = ( y  - 1) pi ,  where i is the specific internal energy defined by i = e/p  - (uz + v2) /2,  and 
i=c,T. The constants y and c, represent the ratio of specific heats of the gas and the specific heat 
at constant volume respectively. 

If we denote the boundary layer thickness by 6 and the tube radius by R and if we assume2' 
that a/ax = 0(1) and a/ay = 0(6/R) ,  then an order-of-magnitude analysis shows that axial viscous 
terms may be neglected. From the radial momentum equation it follows that dp/ay=O(S/R). In 
boundary layer theory this term is approximated by zero. However, we anticipate that 
6 / R  = O(0-1)-0(1)  and hence we shall retain the fuller radial momentum equation with only the 
axial viscous term deleted. 
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Figure 1. Flow structure in the shock tube. The numbers correspond to the regions labelled on the wave diagram (Figure 
2), the upper dashed line denotes the centre of the tube, which is an axis of symmetry, and below the lower dashed line 

represents the region in which viscous effects are important 

The discretization can be written in the form 

This represents a method which is implicit across the tube and explicit down the tube. The 
implicit part is used to allow boundary layers to be resolved without restricting the time step 
allowed by stability limits to impractical levels. The flux functions used are given by Roe's flux 
function with a superbee-limited correction' 14, 15* f or F and central difference flux functions 

V is constructed using the approximations 

(5)  

(6) 

a v  vi, j+ 1 -vi ,  j -- - 
azi,j+112 Az ' 

vi, j+ 1 / 2 = +  (vi, j+vi, j+ i ) ,  

where v denotes u, u or T. The approximate Riemann solver-flux-limited correction approach is 
used to capture the shock and contact surface sharply and without spurious oscillations. The use 
of central differences is motivated by the need for linearizations in time of the flux functions G and 
V and also by the anticipated absence of discontinuities in the z-direction. The linearization 

is used as in Reference 22, where Y = Y(w,, . . . , oM) represents either G or V. This leads to 
a distinct tridiagonal system for each i at each time level and simplifies the computation. The 
choice of flux functions facilitates the calculation of the Jacobians required in the linearizations. 
The Jacobians for the viscous flux function are given in Appendix 11. For the inviscid flux function 
the required expression is simply 

where A is the well known Jacobian of G evaluated at the (i, k)th node. 
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The boundary conditions are imposed by extrapolating interior values and the boundary 
conditions onto fictitious nodes outside the computational domain. The usual algorithm is then 
applied to update all the interior nodes. A relation is required between the fictitious nodal values 
and the interior values to close the system of linear equations. Assume that the values at the 
fictitious node, denoted by a subscript ‘f‘, depend only on the values at the node adjacent to the 
boundary, denoted by a subscript ‘l’. Then the functional dependence can be written 

Wf = g(w1L (9) 

where g could be a non-linear function. Two types of boundary conditions will be considered, 
namely non-slipimposed temperature conditions and non-slipthermally insulated conditions. 
Common to the two is the requirement of no fluid flow at the boundary. Linear extrapolation 
from the interior node and the boundary conditions u=O and v = O  gives 

uf= -u1, (10) 

v f =  -u1. (1 1) 

For no-heat-flow conditions at the boundary we assume, as in boundary layer theory, that the 
pressure is constant close to the boundary and we put Tf = Tl to ensure that the temperature 
gradient at the boundary is zero as required by the thermally insulated condition. This leads to 
the expressions 

Pf = P1, (12) 

ef=el. (13) 
Hence for the no-heat-flow case 

and g is linear. 
The situation when the boundary temperature is imposed is more complicated. In this case the 

pressure is again assumed constant close to the wall and so pf =pl.  The internal energy i, at the 
wall is known from the imposed temperature and the fictitious value is obtained from linear 
extrapolation to give if = 2i, - il. Since the pressure, internal energy and velocity components are 
known, this allows g to be determined as 

wq + (h  - l ) K  

where 

For this case g is non-linear. To preserve the linearity of the equations, a linearization of g in time 
is performed to give 

w q + l -  - g, n + n(w;  + - w f ), (17) 
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which is evaluated at wf. The expression for 

conditions is replaced by the linear expression 

is given in Appendix 11. 
In practice, symmetry about the centre of the tube is exploited and one of the wall boundary 

.-[ -‘i]. 
w4 

The extension of the method to cylindrical geometries is given in Appendix I. 

3. METHOD VERIFICATION 

First, for the sake of reference, consider the inviscid solution. For given initial pressures and 
temperatures a shock and a contact surface propagate into the low-pressure gas with constant 
speeds and an expansion fan propagates into the high-pressure gas. The trajectories of these 
waves are shown in Figure 2. There is no attenuation and the test time, which increases linearly 
with distance, is given by 

where U,d and us are the contact surface and shock speeds respectively and x is the distance from 
the membrane. The evolution depends on the pressure ratio and is independent of the actual 
pressure values. Some typical flows are given in Table I. 

We now turn to the viscous problem. First a case is considered where d/R+ 1. We anticipate 
that the solutions obtained by boundary layer methods will be accurate for this case. Boundary 
layer thicknesses computed from the present simulation are considered in Figure 3 for varying 
time steps and grid spacings across the boundary layer. The boundary layer thickness is defined in 
this paper as the distance from the boundary at which an axial velocity of 99% of the value at the 

shock 
\ \  I 

X 

Figure 2. Wave trajectories for the inviscid solution 
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Table I. Shock tube flow parameters predicted by inviscid theory for ideal argon (y = 1.66). Here v, and vcd 

denoted the shock and contact surface velocities respectively. The shock Mach number is defined as v,/c, 
where c is the sound speed ahead of the shock 

0, l)cd Rate of test time increase 
Pressure ratio Shock Mach number (m s- l )  (m s - l )  (P m-ll  

2 
4 
8 

11.9 
20 
40 

100 
200 

1.15 
1.31 
1.49 
1.60 
1.74 
1.94 
2.20 
2.38 

364 66 
416 132 
473 196 
507 233 
553 219 
615 340 
697 415 
757 469 

12385 
5195 
2983 
2328 
1773 
1318 
972 
8 10 

600.0 

500.0 

6 O(m) 

400.0 

300.0 

* * x= 0.4 dt=0.25 

Mirels 

Mirels 

200.0 
0.0 20.0 40.0 60.0 80.0 

dz ~ ( m )  

Figure 3. Boundary layer thickness 6 computed from the present simulation as a function of radial grid spacing dz across 
the boundary layer at distances of 0.2 and 0.4 m from the shock and for time steps d t = 0 3  x and 2-5 x lo-’. These 
results are for a Mach 2 shock in air travelling into a pressure of 1 bar. The results from Reference 5 are 6=283 at 0.2 m 

and S = 401 at 0.4 m? values which are marked on the graph 

centre of the tube is attained. The thicknesses are shown for distances of 0 2  and 0.4 m from the 
shock and the present values are compared with the values obtained by Mirels.’ It is of interest to 
examine the convergence behaviour as the time step and the grid spacing are refined. From 
Figure 3 it can be seen that the boundary layer thicknesses do converge as the grid spacing is 
refined and that the limiting values are equal to the values from the boundary layer method of 
Reference 5. It is also clear that the effect of the limited time step refinement shown is consistent 
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with convergence as the time step is refined to the same limiting values obtained for the grid 
spacing refinement, although this convergence is not demonstrated on the figure. 

The experimental results of Duff2 show significant departures from the inviscid behaviour for 
flows in argon at low pressures. The shock was found to attenuate and the contact surface was 
found to accelerate. The shock attenuation is shown in Figure 4 and is non-linear. The two- 
dimensional Navier-Stokes solution shows similar behaviour but with an underlying numerical 
diffusion. To check that the numerical diffusion is not at a level which would invalidate the 
solutions, the problem’s viscosity and heat conductivity were varied and the results are plotted in 
Figure 5. A parameter E is defined as pp = &pLgas and rcp = EK$,,, where subscript ‘p’ denotes the value 
used in the simulation and subscript ‘gas’ denotes the gas value. The values of E used in Figure 
5 are E = ) ; ,  5 and 1, with these values being chosen because numerical diffusion should become 
more apparent as E is reduced below unity. The boundary layer profiles thin and the shock wave 
attenuation decreases as the problem’s viscosity is decreased, i.e. as E is decreased. This suggests 
that numerical diffusion does not dominate the problem’s viscosity. 

It is well known from boundary layer theory that 6a(Re)-’12, where Re is the Reynolds 
number. We shall assume that the changes in the reference density and velocity are small as E is 
reduced. This is justified by the similarity of the boundary layer profiles obtained in Figure 5, 
which leads to a similarity of the flows in the inviscid core. Hence the value of ( h / p ~ ” ) / p ~ ~ ~  should 
be independent of E at a fixed distance from the shock if boundary layer theory is applicable. This 
value, denoted by r, is plotted as a function of the normalized distance between the shock and the 
contact surface in Figure 6. As can be seen, near the shock, which is located at a normalized 
distance of zero, where the boundary layer is relatively thin, all values of r for varying E compare 
closely. However, closer to the contact surface, at a normalized distance of unity, the comparison 
becomes less close. It is expected that boundary layer theory will be more accurate as E is 

2*25* 

L aJ n 
E 
3 
(I: 1.75- 
r 
0 

E 
Y 1.5- 
0 
0 
L 
(I] 7 

0 inviscid 
A experiment 

\ 
1.0 I , , , , I  , , , , , ~ , , , ~ , , , , 1 , , , , ~ , , , , ~ , , , , ~ , ,  

0 1 2 3 4 5 6 7 

distance from membrane (m) 
Figure 4. Shock mach number as a function of distance for an initial pressure of 67 Pa and a pressure ratio of 110. 

Inviscid theory gives a Mach number of 2.22. The experimental values are from Reference 2 
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1 . 0 ~ , , , " , , ~ ~ ~ ~ ~ ~ ~ , " ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l ~ ~ l ~ ~ ~ ~ ~ 1 ~ I  
0 1 2 3 4 5 6 7 0  

(b) distance from membrane (m) 

Figure 5. Shock Mach number and boundary layer thickness for various problem viscosities pp and heat conductivities 
tipr where pp=&pWss, t i P = ~ ~ g a s  and pgas and tigas are the gas values 
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0.1 

0.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

normalised distance 

Figure 6. r plotted as a function of normalized distance from the shock to the contact surface for various values of the 
parameter E. Here r = @ / p ~ ” ) / p ~ ~ ~  

decreased because the boundary layers obtained become thinner. Hence we are particularly 
interested in the comparison between r for the physical values of p and K corresponding to E = 1 
and the smaller values of E. Note the almost exact match in the profiles of r between the cases 
E = $ ,  and ~ = 3 ,  suggesting that boundary layer theory is appropriate for these cases, whereas 
there is some divergence between E =  1 and these two cases. This suggests that boundary layer 
theory is breaking down as a model for the cases which are examined in Reference 2. 

Further evidence of the non-linear attenuation of the shock is found by examining the pressure 
ratio required to produce a shock of a specified strength as a function of distance. This function is 
plotted for a Mach 1.6 shock in Figure 7. Again the present results show reasonable agreement 
with experiment and a non-linear behaviour is observed. 

The behaviour of the test times is particularly striking when compared to the inviscid 
behaviour. As noted above, inviscid theory predicts a test time increasing linearly with distance 
from the membrane. It was found experimentally that the test time actually tended to a limiting 
value. The test times found by the present method are given in Table I1 along with those predicted 
by the boundary layer method of Reference 23 and the experimental2 and inviscid values. As can 
be seen, the present values are in reasonable agreement with the experimental and boundary layer 
values and it is clear that inviscid theory is useless for these cases. It is surprising that the values 
obtained by the boundary layer approach are quite so good for the lower-Mach-number shocks, 
since the boundary layers involved become of a comparable width to the tube radius. Hence the 
approximation involved in assuming no radial pressure gradient, as discussed in Section 2, must 
be considered questionable. 

In conclusion, the numerical simulation of the two-dimensional Navier-Stokes equations 
shows qualitative and respectable quantitative agreement with experiment and it is reasonable to 
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distance from membrane (rn) 

Figure 7. Pressure ratio required to produce a shock Mach number of 1.6 as a function of distance for an initial pressure 
of 67 Pa. Inviscid theory gives a constant ratio of 11.9. The experimental values are from Reference 2 

Table 11. Test times (in microseconds) for a variety of shock Mach numbers at a distance 
of 2.5 m from the membrane for a pressure ahead of the shock of 67 Pa. The boundary 

layer results are those of MirelsZ3 and the experimental values are those of Duff2 

Shock Mach number Present results Mirels Experiment Inviscid 

1.4 
1.6 
1.8 
2.0 

670 418 330 9593 
360 31 1 250 5925 
230 253 160 4070 
160 202 150 3090 

use the solutions obtained to examine the flow effects more carefully. This is done in the next 
section. 

4. CONSIDERATION OF THE FLOW FIELD 

The wave trajectories for the inviscid and viscous solutions are plotted in Figure 8. The 
attenuation of the shock and the acceleration of the contact surface are evident. The two main 
points of interest are the non-linear attenuation of the shock and the question as to why the 
contact surface accelerates. 

To consider these questions, the boundary layer thickness was plotted as a function of the 
normalized distance between the shock and the contact surface at several fixed times. The profiles 
are shown in Figure 9. The peak thickness is achieved at the contact surface as in Reference 8. 
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13 shock viscus) 

x CD inviscid 

0.0 0.5 10 l.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

distance from membrane (m) 
Figure 8. Wave trajectories for a pressure ratio of 100 and an initial pressure of 66.7 Pa 

13 time 0.Ox) 
0 time 0.007 
A time 0.004 I-- x time 0.001 

0.l-J 

0.0 1 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 

normalised distance 
Figure 9. Boundary layer profiles for an initial pressure ratio of 100 and a pressure of 6667 Pa ahead of the shock 
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0.6- 
v l :  
3 -  
$ 0.5: 

0.4: 

0.3- 

.- 
t3 

0.2- 

x/length 

Figure 10. Velocity vectors for an initial pressure ratio of 100 and a pressure of 66.67 Pa ahead of the shock at time 0.1 s 
(Note the different length scaling in the axial and radial directions.) 

If we consider the flow as being divided into two parts, the viscous region and the inviscid 
region, an analogy can be drawn between the flow in the inviscid region and the flow through 
a converging-diverging nozzle. The plot of the velocity field in Figure 10 shows the fluid in the 
inviscid region flowing in a manner consistent with the nozzle analogy. In the case of the nozzle 
the flow accelerates through the throat of the nozzle where the fluid is compressed. The plot of the 
flow parameters down the centre of the shock tube given in Figure 11 is consistent with this 
behaviour. The axial velocity increases up to the contact surface and then decreases thereafter. In 
addition, the flow is more compressed at the contact surface than is the case in the inviscid shock 
tube solution. This behaviour explains the acceleration of the contact surface, which moves with 
the fluid velocity. Notice the slight oscillation in density near the shock. This appears to be 
a numerical artefact and could be caused by the initial approximate projection onto the 
eigenvectors required in Roe’s scheme. 

The non-linear attenuation of the shock can also be examined. Initially, the rapid attenuation 
of the shock can be ascribed to the nozzle-type effect altering the parameters at the shock. Once 
this initial rapid change has settled down, the shock velocity remains constant over a length of the 
shock tube. During this time the boundary layer is growing slowly. In Figure 12 the velocity and 
temperature on the axis of the tube at the upstream side of the shock and at the contact surface 
are plotted. It can be seen that the velocity at the contact surface starts to attenuate at around 2 m 
from the membrane, with the rate of attenuation speeding up with distance. Further, the velocity 
at the upstream side of the shock behaves correspondingly. Following the nozzle analogy, a lower 
‘inlet’ velocity at the contact surface to the diverging part of the nozzle leads to a lower ‘outlet’ 
velocity at the shock. An examination of the boundary layer thickness shows that the attenuation 
at the contact surface is due to viscous attenuation. Similarly, the thermal boundary layer starts 
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Q2000- 
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Figure 11. Solutions down the centre of the tube at time 0.1 s for an initial pressure ratio of 100 and a pressure of 66.67 Pa 

ahead of the shock 
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Figure 11. (Continued) 
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Figure 12. 
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Values of the flow parameters along the tube axis at the shock and the contact surface 
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to take effect at the contact surface at around 5 m from the membrane, with a corresponding 
cooling at the shock. Hence it is surmised that the second region of attenuation of the shock 
observed by Duff’ is due to the growth of the boundary layers at the contact surface to fill the 
tube, thus affecting the flow in the ‘inviscid region’, a term which is now used only for consistency 
with the above descriptions of the flow. Both the fluid velocity attenuation and the thermal 
cooling due to the boundary layer effects act to decrease the shock velocity, since the density tends 
to increase with decreasing temperature, and the shock velocity is given by the 
Rankine-Hugoniot condition 

where the subscript ‘u’ denotes conditions upstream of the shock and the subscript ‘d’ denotes 
conditions downstream of the shock. This expression decreases both with decreasing uu and with 
increasing pu. To test this scenario, the values for E = &  are also plotted in Figure 12. It was noted 
above (see Figure 6) that the second stage of the shock attenuation was absent for this case. It can 
be seen that the boundary layer effects at the contact surface are also absent, lending support to 
the explanation given. 

We shall now consider some of the assumptions required to obtain results via the boundary 
layer equations in the light of the current solutions. First, it should be noted that some of the 
boundary layers examined in this paper grow at the contact surface to fill the tube. As mentioned 
above, this begs the question as to how applicable the boundary layer equations are for these 
cases. The results for cases in which the boundary layers remain thin agree closely with the 
boundary layer results of Reference 5. Secondly, all the boundary layer solutions require the 
assumption that the shock speed is constant and that the flow is uniform in the shock’s frame of 
reference. It is evident from Duff’s experiments and from the present computations that this is 
only true on a finite interval and is certainly not true in the region near the membrane. This 
transient behaviour is not considered in the boundary layer methods. It is also assumed that the 
flow between the shock and the contact surface is isentropic. This is consistent with neglecting the 
shock attenuation. The entropies computed by the present method show an increase from the 
shock to the contact surface by about a factor of three. The solution of Reference 5 takes into 
account the non-uniformity of the flow between the shock and the contact surface, although still 
retaining the isentropic assumption. 

Ratios of values at the contact surface to those at the shock are shown in Table 111. There are 
several factors which might contribute to the discrepancies between the present values and the 
values obtained from Reference 5. It was noted above that the fluid at the contact surface is 
subject to viscous dissipation at around 2 m from the membrane where the shock Mach number 
is 1.69. The entropy and temperature at the contact surface both rise. This effect accounts for 

Table 111. Ratios of values at the contact surface to values immediately 
behind the shock. The results of Mirels’ are included for comparison 

~ ~~~ 

Method Mirels Present results 

Shock Mach number 1 2 1.79 1.62 1.44 
Temperature 1.33 1.12 1.26 2.02 2.32 
Density 1.54 1.19 0.98 0.71 0.77 
Pressure 205 1.33 1.23 1.43 1.79 
Entropy 1 .o 1 .0 1.27 2.52 2.76 
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some of the differences between the two sets of results. It also should be noted that 6 / R  is of order 
0-1-1, which calls into question the validity of boundary layer equations as a model for this 
situation and also the one-dimensional assumption of the velocity boundary condition at the 
boundary layer edge. 

In Reference 8 the solution upstream of the contact surface is calculated but a uniform free 
stream is assumed. The boundary layer profiles computed from the two-dimensional 
Navier-Stokes simulation agree qualitatively with those obtained there. In particular, the 
increase in thickening just upstream of the contact surface and at the end of the expansion are 
noted. 

5. CONCLUSIONS 

The use of a simulation of the two-dimensional unsteady Navier-Stokes equations to investigate 
boundary layer effects in shock tubes allows a more detailed examination of the flow field with 
fewer simplifying assumptions than required for the boundary layer equation methods. In the 
method used in this paper the flow is assumed to be governed by the thin layer Navier-Stokes 
equations. This is justified by the type of solution expected and obtained, i.e. the flows remain 
convection-dominated in the axial direction with viscous effects being important in the radial 
direction along with small but significant radial convection. The thermodynamics of the gases is 
assumed to be adequately described by the perfect gas law. This is questionable because of the 
high temperatures encountered. However, it should be noted that this is not an assumption 
required by the solution method (see e.g. Reference 21). The code used in this study could be 
modified to account for real gas effects provided that the relevant experimental data describing 
the thermodynamics are available. The one-dimensional implicit formulation gives significant 
improvements in execution time. It was found that the one-dimensional implicit version of the 
code ran about half as quickly as the explicit version. However, the allowable time step increases 
by several orders of magnitude (by three orders of magnitude for the conditions of Figure 3). This 
makes it practical for the code to be run on workstations. 

The flow fields from the simulation suggest that boundary layer development can cause the 
flow in the inviscid core to behave like the flow through a converging-diverging nozzle. This 
analogy helps to explain the observed phenomena involving the arrival times of the shock and the 
contact surface. The results also suggest that the flow in the region assumed to be inviscid is 
eventually subject to viscous dissipation, accounting for the non-linear attenuation of the shock. 

The advantage of the present method over a boundary layer approach is that it does not have 
to 

(1) focus only on the flow between the contact surface and the shock 
(2) assume steady flow 
(3) neglect shock attenuation 
(4) assume a one-dimensional velocity boundary condition at the boundary layer edge 
(5 )  assume isentropic flow between the shock and the contact surface. 

Some or all of these simplifications are required by all boundary layer equation methods. 
However, it should be noted that the present method can be far more expensive computationally, 
since the boundary layer approach of Reference 6, for example, requires the solution of ordinary 
differential equations as opposed to partial differential equations. Our comparisons with experi- 
mental results show that the boundary layer methods give reasonable results, especially when the 
shock Mach number is not close to unity. The present method is more convincing than boundary 
layer methods for cases where the shock Mach number is close to unity and is more flexible with 
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respect to thermal boundary conditions and the specification of gas properties such as viscosity 
and thermodynamic properties. 

Finally, with experimental data and asymptotic approximations available, the low-pressure 
shock tube problem is useful as a test problem for algorithms which solve the two-dimensional 
transient, compressible Navier-Stokes equations. 
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APPENDIX I: CYLINDRICAL EXTENSIONS 

The extension of the scheme to cylindrical co-ordinates is not difficult. Using the same notation as 
in the rectangular case and denoting the radial distance by r and the axial distance by x,  the 
Navier-Stokes equations become 

where the additional term C is given by 

r 0 1 
0 

- p / r  - ( 2 ~ / 3 r ) ( a p / a r  + 2p/r )  
( i / r )8 ( -2pu2 /3 ) /ar  

The discretization follows along similar lines to the rectangular case with the following notes. For 
the linearizations in time we note that, by the chain rule, 

a P  V p  = c, - Vi, 
aT 

where ap /aT  is known and Vi is given above. Also, a straightforward calculation gives, for an 
ideal gas, 

Vp=(y- i)(E-VK), (25) 
where the ith component of E is given by gi4, with dij denoting the (ij)th component of the 
Kronecker delta. 

APPENDIX 11: JACOBIANS FOR THE LINEARIZATIONS 

To construct a system of linear equations, the Jacobians of the flux functions and the boundary 
conditions are required. In this appendix these Jacobians are derived. 

For convenience consider the kinetic energy function K and the specific internal energy i given 
by 
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The vector of unknowns w =(wl,  w2, w3, w4)T here represents the conserved variables 
(p ,  pu, pu, e)T. The gradients of these functions are then given by 

The gradient of the function h defined in equation (16) is given by 

a h  2hzi, a i  
dwk i: dwk’ 
-=-- 

where &lawk is given by (29). The expressions for S2 in (18) are given by 

where 6ik denotes the Kronecker delta and 1 < k 6 4 .  
Now consider the Jacobians of the viscous flux function Vi, j +  112 given by the central difference 

approximations resulting from the approximations ( 5 )  and (6). We shall consider the Jacobian 
with respect to wi, j +  1 ,  since the one with respect to wi, follows similarly. First define the 
constants 

Writing the velocity components as u= wz/wl and u=w3/w1, it follows immediately that 
Vu=(-wwz/w;, ~ / W ~ , O , O ) ~  and Vv=(-w3/w:, 0, l / w l ,  O)T. We can then evaluate the required 
Jacobian J as 

(33) 

where 1 < k<4 .  
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